In a nutshell: Neumann and insulated boundary conditions

Given a second order linear ordinary differential equation with constant coefficients

$$
a_{2}(x) u^{(2)}(x)+a_{1}(x) u^{(1)}(x)+a_{0}(x) u(x)=g(x),
$$

two spatial boundary points $[a, b]$ and two boundary conditions: either Dirichlett, $u(a)=u_{a}$ and $u(b)=u_{b}$; or Neumann: $u^{(1)}(a)=u_{a}{ }^{(1)}$ and $u^{(1)}(b)=u_{b}{ }^{(1)}$. Recall that if a constant has a derivative, that indicates that the constant represents a slope; it does not suggest we are taking the derivative of that constant. An insulated boundary condition is when we have a Neumann condition and the derivative is set to zero.

Parameters:
$n \quad$ The number of sub-intervals into which $[a, b]$ will be divided.

1. Set $h \leftarrow \frac{b-a}{n}$ and $x_{k} \leftarrow a+k h$ noting that $x_{n}=b$.
2. For k going from 1 to $n-1$, assign the following:

$$
\begin{aligned}
p_{k} & \leftarrow 2 a_{2}\left(x_{k}\right)-a_{1}\left(x_{k}\right) h \\
q_{k} & \leftarrow-4 a_{2}\left(x_{k}\right)+2 a_{0}\left(x_{k}\right) h^{2} \\
r_{k} & \leftarrow 2 a_{2}\left(x_{k}\right)+a_{1}\left(x_{k}\right) h
\end{aligned}
$$

If the linear ordinary differential equation has constant coefficients, all p, q and r values are equal to each other.
3. Create the system of $n-1$ linear equations in $n-1$ unknowns

$$
A \mathbf{u}=\left(\begin{array}{ccccccc}
q_{1} & r_{1} & & & & & \\
p_{2} & q_{2} & r_{2} & & & & \\
& p_{3} & q_{3} & r_{3} & & & \\
& & p_{4} & q_{4} & r_{4} & & \\
& & & \ddots & \ddots & \ddots & \\
& & & & p_{n-2} & q_{n-2} & r_{n-2} \\
& & & & & p_{n-1} & q_{n-1}
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
\vdots \\
u_{n-2} \\
u_{n-1}
\end{array}\right)=\left(\begin{array}{l}
2 g\left(x_{1}\right) h^{2} \\
2 g\left(x_{2}\right) h^{2} \\
2 g\left(x_{3}\right) h^{2} \\
2 g\left(x_{4}\right) h^{2} \\
\vdots \\
2 g\left(x_{n-2}\right) h^{2} \\
2 g\left(x_{n-1}\right) h^{2}
\end{array}\right)=\mathbf{g}
$$

4. We modify the matrix A and the vector \mathbf{g} as follows:
a. If the left-hand boundary condition is a Dirichlet condition, update $g_{1} \leftarrow g_{1}-p_{1} u_{a}$;
b. otherwise, the left-hand boundary condition is a Neumann condition, so update:
i. $\quad a_{1,1} \leftarrow a_{1,1}+\frac{4}{3} p_{1}$
ii. $\quad a_{1,2} \leftarrow a_{1,2}-\frac{1}{3} p_{1}$
iii. $\quad g_{1} \leftarrow g_{1}+\frac{2}{3} p_{1} u_{a}^{(1)} h$
c. If the right-hand boundary condition is a Dirichlet condition, update $g_{n-1} \leftarrow g_{n-1}-r_{n-1} u_{b}$;
d. otherwise, the right-hand boundary condition is a Neumann condition, so update:
i. $\quad a_{n-1, n-2} \leftarrow a_{n-1, n-2}-\frac{1}{3} r_{n-1}$
ii. $\quad a_{n-1, n-1} \leftarrow a_{n-1, n-1}+\frac{4}{3} r_{n-1}$
iii. $\quad g_{n-1} \leftarrow g_{n-1}-\frac{2}{3} r_{n-1} u_{b}^{(1)} h$

Note that the right-hand vector \mathbf{g} is not updated for insulated boundary conditions.
5. Solve the updated system of linear equations $A \mathbf{u}=\mathbf{g}$.
6. The approximation of $u\left(x_{k}\right)$ is u_{k} for $k=1, \ldots, n-1$; and
a. If the left-hand boundary condition is Dirichlet, $u\left(x_{0}\right)=u(a)=u_{a}$;
b. otherwise, the left-hand boundary condition is Neumman, so

$$
u\left(x_{0}\right)=u(a) \approx-\frac{2}{3} u_{a}^{(1)} h+\frac{4}{3} u_{1}-\frac{1}{3} u_{2}
$$

c. If the right-hand boundary condition is Dirichlet, $u\left(x_{n}\right)=u(b)=u_{b}$;
d. otherwise, the right-hand boundary condition is Neumann, so

$$
u\left(x_{n}\right)=u(b) \approx \frac{2}{3} u_{b}^{(1)} h+\frac{4}{3} u_{n-1}-\frac{1}{3} u_{n-2}
$$

